Индикатор Взвешенная скользящая средняя (Weighted Moving Average) для торговли бинарными опционами

Народный рейтинг брокеров бинарных опционов за 2020 год:
  • Бинариум
    Бинариум

    1 место! Лучший брокер за этот год! Надежность и честность гарантируется!

  • ФинМакс
    ФинМакс

    3е место за большое количество торговых инструментов!

Сравнение различных типов скользящих средних в торговле

Содержание

Введение

Скользящая средняя (Moving Average, MA) — один из самых популярных технических индикаторов на рынке Forex. Наша цель — рассмотреть различные МА и сравнить их в торговле при одинаковых условиях входа и выхода из рынка.

Рассмотрим семь типов скользящих средних: Moving Average, Adaptive Moving Average, Double Exponential Moving Average, Fractal Adaptive Moving Average, Triple Exponential Moving Average, Variable Index Dynamic Average и Nick Rypock Moving Average.

Типы скользящих средних

В этом разделе приведено краткое описание и формулы для расчета интересующих нас скользящих средних.

Технический индикатор Moving Average

Moving Average — один из самых распространенных технических индикаторов. Он показывает среднее значение цены инструмента за заданный период времени. Существуют различные варианты индикатора MA:

  • Simple Moving Average (SMA) — простая скользящая средняя;
  • Exponential Moving Average (EMA) — экспоненциальная скользящая средняя;
  • Smoothed Moving Average (SMMA) — сглаженная скользящая средняя;
  • Linear Weighted Moving Average (LWMA) — линейно-взвешенная скользящая средняя.

Приведем формулы для расчета каждого варианта индикатора Moving Average:

Вариант индикатора Moving Average Формула для расчета Комментарий
Simple Moving Average (SMA)
  • n — количество единичных периодов (например при n=6 на графике с периодом M15 расчет индикатора будет выполнен за предыдущие 1,5 часа)
  • PRICE — текущее значение цены, в настройках индикатора можно выбрать следующие варианты: high, low, open, close, median price ((high+Low)/2), typical price ((high+Low+Close)/3), weighted close ((high+Low+Close+Close)/4) или данные предыдущего индикатора
Exponential Moving Average (EMA)
  • EMA(i-1) — предыдущее значение
  • F — фактор сглаживания (доля использования значения цен). Коэффициент F выбирается произвольным образом в пределах от 0 до 1, например F=2/(n+1), где n — количество единичных периодов
  • PRICE — текущее значение цены
Smoothed Moving Average (SMMA)
  • SMMA(i-1) — предыдущее значение
  • n — количество единичных периодов
  • PRICE — текущее значение цены
Linear Weighted Moving Average (LWMA)
  • PRICE — текущее значение цены
  • n — количество единичных периодов

Рассмотрим отображения разных вариантов индикатора Moving Average на ценовом графике. На рисунке 1 показаны варианты индикатора Moving Average с периодом 12, рассчитанного по ценам Close.

Рис. 1. Варианты индикатора Moving Average

Как видно из рисунка, Simple Moving Average на флэте слегка колеблется, а это может дать ложные торговые сигналы. Smoothed Moving Average, как следует из ее названия, выглядит более сглаженной. Exponential Moving Average и Linear Weighted Moving Average ведут себя примерно одинаково на флэте. Linear Weighted Moving Average во время трендового движения подходит ближе остальных линий к ценам и, в отличие от SMMA и EMA, не зависит от своего предыдущего значения.

Технические индикаторы на основе экспоненциальной скользящей средней (EMA)

Экспоненциальная скользящая средняя (EMA) лежит в основе ряда других технических индикаторов.

Adaptive Moving Average (AMA)

Triple Exponential Moving Average

Fractal Adaptive Moving Average

Variable Index Dynamic Average

Nick Rypock Moving Average

Индикатор Описание Формула расчета Расшифровка формулы расчета
MA с небольшой чувствительностью к шумам. По сравнению с остальными скользящими средними, у этого индикатора минимально запаздывание при определении разворотов и смены тренда.
При резких скачках цены он не дает сильных флуктуаций, а значит, не вызывает ложных торговых сигналов.
  • AMA(i-1) — предыдущее значение индикатора
  • Price(i) — текущее значение цены
  • SSC(i) — константа сглаживания

Double Exponential Moving Average

Используется для сглаживания цены или значений других индикаторов.

Список лучших платформ для трейдинга бинарными опционами:
  • Бинариум
    Бинариум

    1 место! Лучший брокер за этот год! Надежность и честность гарантируется!

  • ФинМакс
    ФинМакс

    3е место за большое количество торговых инструментов!

Главный плюс — отсутствие ложных сигналов в моменты, когда цена двигается зигзагообразно. Он способствует сохранению позиции в период сильного тренда и уменьшает запаздывание сигнала по сравнению с обычной EMA.

  • EMA(Price, n, i) — текущее значение EMA от цены Price с периодом n
  • EMA2(Price, n, i) = EMA(EMA(Price, n, i), n, i) — двойная EMA от цены Price с периодом n
Синтез одинарной, двойной и тройной экспоненциальной МА. Запаздывание в итоге гораздо меньше, чем для каждой из этих МА по отдельности.

Индикатор применяется вместо традиционных скользящих средних, а также для сглаживания ценового графика и значений других индикаторов.

  • EMA(Price, n, i) — текущее значение EMA от цены Price с периодом n
  • EMA2(Price, n, i) = EMA(EMA(Price, n, i), n, i) — двойная EMA от цены Price с периодом n
  • EMA3(Price, n, i)=EMA(EMA2(Price, n, i), n, i) — тройная EMA от цены Price с периодом n
Здесь фактор сглаживания вычисляется на основании текущей фрактальной размерности ценового ряда. Достоинство индикатора в том, что он идет за сильным трендом и резко замедляется в периоды консолидаций.
  • Price(i) — текущее значение цены
  • A(i) — текущий фактор экспоненциального сглаживания
Это EMA, период усреднения которой динамически меняется и зависит от волатильности рынка.

Волатильность рынка измеряется осциллятором Chande Momentum Oscillator (CMO). Он измеряет отношение между суммами положительных и отрицательных приращений приращений за определенный период (период CMO). Значение CMO служит коэффициентом для сглаживающего фактора EMA. Таким образом, у индикатора настраиваются два параметра: период осциллятора CMO и период сглаживания EMA.

  • F=2/(n+1) — фактор сглаживания, n — количество единичных периодов
  • ABS — математическая функция,вычисляющая абсолютное значение величины
  • VIDYA(i-1) — предыдущее значение индикатора
  • CMO(i) — значение осциллятора CMO
Индикатор не входит в стандартный комплект поставки терминала MetaTrader 5. Его основное достоинство — в том, что практически нет колебаний во флэте, он строго следует за трендом.

  • NRMA(i-1) — предыдущее значение индикатора
  • Price(i) — текущее значение цены
  • F=2/(n+1) — фактор сглаживания, n — количество единичных периодов

NRratio — коэффициент к фактору сглаживания

Отличия индикаторов от обычной EMA

Сравним рассмотренные выше индикаторы с обычной EMA. На рисунке 2 показаны:

  • Adaptive Moving Average (период 12, быстрая EMA — 2, медленная EMA — 30, сдвиг — 0)
  • Double Exponential Moving Average (период — 12, сдвиг — 0)
  • Fractal Adaptive Moving Average (период — 12, сдвиг — 0)
  • Exponential Moving Average (период — 12, сдвиг — 0)
  • Triple Exponential Moving Average (период — 12, сдвиг — 0)
  • Variable Index Dynamic Average (период CMO — 12, период EMA — 12, сдвиг — 0)
  • Nick Rypock Moving Average (метод усреднения — SMA, глубина сглаживания — 3, параметр сглаживания — 15 (не используется для SMA), Kf — 1, Fast — 12, Sharp — 2, сдвиг по вертикали и горизонтали — 0).

Все индикаторы построены на ценах Close.

Рис. 2. Сравнение индикаторов, основанных на экспоненциальной скользящей средней (EMA)

Как видно из рисунка 2, DEMA и TEMA, по сравнению с обычной EMA, более точно повторяют движение цены, однако их колебания во флэте могут давать ложные торговые сигналы. Остальные индикаторы (FRAMA, AMA, VIDYA, NRMA) во флэте почти не колеблются, не реагируют на небольшие изменения цены. В тренде почти все индикаторы ведут себя одинаково, TEMA и FRAMA быстрее других отреагировали на изменение направления тренда.

Сравнение различных типов скользящих средних

Сравним рассмотренные выше технические индикаторы на торговой стратегии с одинаковыми условиями входа и выхода из рынка.

Описание торговой стратегии

Для тестирования индикатора была выбрана несложная стратегия с очевидными условиями входа в рынок и выхода из него.

Условия входа в рынок.

  • Предварительный сигнал на покупку: линия индикатора пересекает тело «бычьей» свечи. Далее, если разность между текущим и предыдущим значениями индикатора больше заданного параметра Growth factor (индикатор растет), открываем сделку на покупку.
  • Предварительный сигнал на продажу: линия индикатора пересекает тело «медвежьей» свечи. Далее, если разность между предыдущим и текущим значениями индикатора больше заданного параметра Growth factor (индикатор падает), открываем сделку на продажу.

Условия выхода из рынка:

  • по достижению уровней TakeProfit или StopLoss;
  • если открыта сделка на покупку и линия индикатора пересекла тело «медвежьей» свечи;
  • если открыта сделка на продажу и линия индикатора пересекла тело «бычьей» свечи.

На рисунках 3,4 показаны примеры торговли по данной стратегии.

Рис. 3. Пример сделки на покупку

Рис. 4. Пример сделки на продажу

Похожая торговая стратегия реализована в советнике Moving Average, который можно найти в навигаторе терминала MetaTrader 5.

Создание советника

Проверять условия входа и выхода на рынок будем только на новом баре, а не на каждом тике. Сначала проверяется наличие открытой позиции (для этого в советнике создана функция SelectPosition). Если таковых нет, то проверяем условие входа (функция CheckForOpen), если есть — проверяем условие выхода (функция CheckForClose).

Полный код советника приложен к статье (файл MultiMovingAverageExpert.mq5). Рассмотрим только реализацию условий входа и выхода из рынка. Проверка условий входа реализована в функции CheckForOpen следующим образом:

  • В массиве rt[ ] хранятся исторические данные о ценах
  • В массиве ma[] — значения индикатора.
  • rt[0].close, rt[0].open — значение предыдущей цены close/open
  • ma[0] — предыдущее значение индикатора
  • ma[1] — текущее значение индикатора.
  • GFactor — коэффициент роста индикатора.
  • Переменная signal далее используется для формирования торгового запроса на покупку или продажу.

Проверка условий выхода реализована в функции CheckForClose так:

Тестирование и результаты работы советника

Тестировать советник будем на валютных парах EUR USD, GBPUSD, USDJPY, USDCAD, AUDUSD, таймфрейм H1. TakeProfit — 80 пунктов, StopLoss — 50 пунктов, объем лота для торговли 0.1, размер депозита — 10 000 USD, режим тестирования — все тики, плечо 1:100, 5-значные котировки, сервер: MetaQuotes-Demo.

Тестирование выполнено за период с 01.01.2020г. по 09.09.2020г.

Для каждого индикатора были оптимизированы период (диапазон изменения 5 — 50, шаг 1) и параметр Growth factor (диапазон изменения 0,0001 — 0,0001, шаг 0,001).

Для Variable Index Dynamic Average оптимизировался период EMA (в качестве периода расчета индикатора) и период осциллятора CMO (диапазон изменения 5 — 50, шаг 1).

Для Nick Rypock Moving Average оптимизировался параметр Fact, определяющий период расчета индикатора.

Расчет значений индикаторов выполнен по ценам Close, без сдвига по горизонтали и вертикали. У некоторых индикаторов есть дополнительные параметры:

Наименование скользящей средней Значения параметров
Adaptive Moving Average
  • Период быстрой EMA — 2
  • Период медленной EMA — 30
Nick Rypock Moving Average
  • Метод усреднения — SMA
  • Глубина сглаживания — 3
  • Параметр сглаживания — 15 (не используется при методе усреднения SMA)
  • KF=1
  • Sharp=2

Результаты тестирования на валютной паре EUR USD

Результаты тестирования на валютной паре EUR USD (варианты с наибольшей чистой прибылью) представлены в таблице:

Наименование скользящей средней Оптимизируемые параметры и их значения Количество трейдов Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная
просадка по средствам
Moving Average (метод усреднения Simple) Период —15, Growth factor — 0.0002 383 1309.82 1.32 3.14 0.1 397.29 (3.81%) 417.26 (3.99%)
Moving Average (метод усреднения Exponential) Период — 11, Growth factor — 0.0003 405 1109.72 1.22 3.02 0.08 346.35 (3.39%) 367.45 (3.6%)
Moving Average (метод усреднения Smoothed) Период — 6, Growth factor — 0.0003 405 1109.72 1.22 3.02 0.08 346.35 (3.39%) 367.45 (3.6%)
Moving Average (метод усреднения Linear Weighted) Период — 22, Growth factor — 0.0002 351 1505.35 1.34 3.65 0.11 383.71 (3.41%) 412.88 (3.91%)
Adaptive Moving Average Период — 14, Growth factor — 0.0001 384 1024.19 1.19 1.63 0.07 600.06 (5.41%) 627.36 (5.64%)
Double Exponential Moving Average Период — 28, Growth factor — 0.0003 366 1676.43 1.39 3.49 0.12 460.33 (4.39%) 481.03 (4.58%)
Triple Exponential Moving Average Период — 44, Growth factor — 0.0002 482 1842.81 1.35 5.31 0.11 321.07 (3.14%) 347.27 (3.39%)
Fractal Adaptive Moving Average Период — 16, Growth factor — 0.0007 174 766.52 1.37 2. 69 0.12 252.4 (2.5%) 285.08 (2.78%)
Variable Index Dynamic Average Период EMA — 12, период CMO — 2, Growth factor — 0.0003 333 1237.31 1.26 2.86 0.09 385.44 (3.43%) 432.81 (3.84%)
Nick Rypock Moving Average Fact — 15, Growth factor — 0.0001 295 1669.62 1.42 4.14 0.14 376.22 (3.5%) 403.52 (3.75%)

Из результатов тестирования можно сделать следующие выводы:

  • Наибольший показатель чистой прибыли и фактор восстановления — Triple Exponential Moving Average, однако другие ее показатели не самые высокие, также неплохие результаты показали Double Exponential Moving Average и Nick Rypock Moving Average.
  • Наихудшие показатели прибыльности, фактора восстановления, коэффициента Шарпа, а также наибольшую просадку по средствам и балансу показала Adaptive Moving Average.

Для более наглядного сравнения результатов тестирования нормируем показатели чистой прибыли, прибыльности, коэффициента Шарпа, фактора восстановления, максимальных просадок по балансу и средствам по следующей формуле:

  • nValue — нормированное значение параметра в интервале от 0 до 1,
  • Value — текущее значение параметра,
  • MaxValue — максимальное значение параметра,
  • MinValue — минимальное значение параметра.

Результаты представлены в таблице (желтым выделены наилучшее результаты, красным — наихудший):

Наименование скользящей средней Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная просадка по средствам Сумма показателей без учета просадок Сумма показателей с учетом просадок
Moving Average (метод усреднения Simple) 0.50479 0.56522 0.41033 0.42857 0.41676 0.38618 1.9089 1.10597
Moving Average (метод усреднения Exponential) 0.31887 0.13043 0.37772 0.14286 0.27024 0.24065 0.96988 0.459
Moving Average (метод усреднения Smoothed) 0.31887 0.13043 0.37772 0.14286 0.27024 0.24065 0.96988 0.459
Moving Average (метод усреднения Linear Weighted) 0.68646 0.65217 0.54891 0.57143 0.3777 0.37338 2.45898 1.7079
Adaptive Moving Average 0.23941 0 0 0 1 1 0.23941 -1.76059
Double Exponential Moving Average 0.84541

0.86957 0.50543 0.71429 0.59808 0.57248 2.9347 1.76413
Triple Exponential Moving Average 1 0.69565 1 0.57143 0.19572 0.18169 3.26708 2.88787
Fractal Adaptive Moving Average 0 0.78261 0.28804 0.71429 0 0 1.78494 1.78494
Variable Index Dynamic Average 0.43742 0.29631 0.33361 0.27656 0.38267 0.43161 1.34419 0.52992
Nick Rypock Moving Average 0.83909 1 0.68207 1 0.35615 0.34603 3.52115 2.81897

В последнем столбце таблицы при суммировании показателей значения максимальной просадки по балансу и по средствам взяты с отрицательным знаком (чем меньше просадка, тем лучше стратегия). Таким образом, наилучшие показатели для рассмотренной стратегии продемонстрировали Triple Exponential Moving Average, Nick Rypock Moving Average и Double Exponential Moving Average (в таблице выделены желтым). Результаты тестирования для TEMA, NRMA и DEMA приведены на рис. 5-10.

Рис. 5. График баланса (средств) для Triple Exponential Moving Average

Рис. 6. Отчет для Triple Exponential Moving Average

Рис. 7. График баланса (средств) для Nick Rypock Moving Average

Рис. 8. Отчет для Nick Rypock Moving Average

Рис. 9. График баланса (средств) для Double Exponential Moving Average

Рис. 10. Отчет для Double Exponential Moving Average

Из рис. 5, 7, 9 видно, что график баланса (средств) для TEMA выглядит более стабильно, чем NRMA и DEMA, хотя имеет небольшие просадки. На графике баланса (средств) NRMA наблюдается резкий рост прибыли в последние 3 месяца торговли, на графике DEMA рост прибыли (с небольшой просадкой) начитается с декабря 2020 года.

Результаты тестирования на валютной паре GBPUSD

Результаты тестирования на валютной паре GBPUSD представлены в таблице:

Наименование скользящей средней Оптимизируемые параметры и их значения Количество трейдов Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная
просадка по средствам
Moving Average (метод усреднения Simple) Период —38, Growth factor — 0.0005 52 1013.56 1.98 3.82 0.32 207.04 (2.7%) 265.06 (2.65%)
Moving Average (метод усреднения Exponential) Период —41 , Growth factor — 0.0002 219 787.12 1.14 1.23 0.07 576.96 (5.21%) 639.44 (5.75%)
Moving Average (метод усреднения Smoothed) Период — 42, Growth factor — 0.0003 48 817.42 1.71 3.85 0.26 151.32 (1.51%) 212.24 (2.04%)
Moving Average (метод усреднения Linear Weighted) Период — 50, Growth factor — 0.0001 328 1086.08 1.17 1.26 0.07 818.34 (7.45%) 861.04 (7.82%)
Adaptive Moving Average Период — 21, Growth factor — 0.001 100 1102.16 1.61 4.61 0.21 176.46 (1.71%) 239.12 (2.28%)
Double Exponential Moving Average Период — 23, Growth factor — 0.0007 263 1070.88 1.21 1.96 0.08 466.24 (4.42%) 547.58 (5.16%)
Triple Exponential Moving Average Период — 30, Growth factor — 0.0009 214 1443.90 1.39 4.11 0.14 322.76 (3.02%) 351.14 (3.28%)
Fractal Adaptive Moving Average Период — 38, Growth factor — 0.0001 819 651.54 1.05 0.85 0.02 747.98 (7.12%) 764.88 (7.28%)
Variable Index Dynamic Average Период EMA — 35, период CMO — 7, Growth factor — 0.0004 73 1606.98 1.99 5.20 0.34 251.94 (2.52%) 309 (3.08%)
Nick Rypock Moving Average Fact — 45, Growth factor — 0.0005 53 978.30 1.80 3.86 0.29 200.64 (1.99%) 253.58 (2.51%)

Нормированные результаты представлены в таблице (желтым выделены наилучшее результаты, красным — наихудший):

Наименование скользящей средней Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная просадка по средствам Сумма показателей без учета просадок Сумма показателей с учетом просадок
Moving Average (метод усреднения Simple) 0.3789 0.98929 0.68343 0.91799 0.08354 0.08141 2.96961 2.80467
Moving Average (метод усреднения Exponential) 0.1419 0.09351 0.08718 0.13465 0.63812 0.65845 0.45724 -0.8393
Moving Average (метод усреднения Smoothed) 0.17416 0.70302 0.69032 0.74598 0 0 2.31347 2.31347
Moving Average (метод усреднения Linear Weighted) 0.45481 0.12036 0.09417 0.14629 1 1 0.81562 -1.1844
Adaptive Moving Average 0.47164 0.58999 0.86402 0.57613 0.03769 0.04143 2.50177 2.42265
Double Exponential Moving Average 0.4389 0.17142 0.25383 0.1936 0.47213 0.51686 1.05774 0.06875
Triple Exponential Moving Average 0.82931 0.36161 0.74969 0.36845 0.25702 0.21409 2.30906 1.83795
Fractal Adaptive Moving Average 0 0 0 0 0.89452 0.85179 0 -1.7463
Variable Index Dynamic Average 1 1 1 1 0.15085 0.14914 4 3.70001
Nick Rypock Moving Average 0.342 0.79826 0.69126 0.82047 0.07394 0.06372 2.65199 2.51433

Как следует из таблиц, наилучшими показателями обладает Variable Index Dynamic Average, также неплохо показали себя Nick Rypock Moving Average и Moving Average с методом усреднения Simple. Результаты тестирования для VIDYA, NRMA и SMA приведены на рис. 11-16.

Рис. 11. График баланса (средств) Variable Index Dynamic Average

Рис. 12. Отчет для Variable Index Dynamic Average

Рис. 13. График баланса (средств) Nick Rypock Moving Average

Рис. 14. Отчет для Variable Index Nick Rypock Moving Average

Рис. 15. График баланса (средств) Simple Moving Average

Рис. 16. Отчет для Simple Moving Average

Из рис. 11-16 видим, что графики VIDYA, NRMA и SMA выглядят примерно одинаково, в начале торговли наблюдается небольшая просадка, далее графики растут, количество сделок у VIDYA больше, чем NRMA и SMA. Процент прибыльных трейдов у VIDYA превышает NRMA и SMA.

Результаты тестирования на валютной паре USDJPY

Результаты тестирования на валютной паре USDJPY представлены в таблице:

Наименование скользящей средней Оптимизируемые параметры и их значения Количество трейдов Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная
просадка по средствам
Moving Average (метод усреднения Simple) Период —34, Growth factor — 0.0004 451 1784.95 1.32 3.69 0.1 465.52 (4.17%) 483.34 (4.32%)
Moving Average (метод усреднения Exponential) Период — 42, Growth factor — 0.0007 465 1135.23 1.20 2.21 0.07 461.52 (4.08%) 514.61 (4.53%)
Moving Average (метод усреднения Smoothed) Период — 33, Growth factor — 0.0008 372 1702.94 1.36 5.15 0.12 296.57 (2.58%) 330.6 (2.87%)
Moving Average (метод усреднения Linear Weighted) Период — 50, Growth factor — 0.0005 477 1892.24 1.33 4.66 0.10 384.06 (3.68%) 406.1 (3.88%)
Adaptive Moving Average Период — 46, Growth factor — 0.0006 403 1460.51 1.26 2.56 0.09 527.75 (4.77%) 569.67 (5.13%)
Double Exponential Moving Average Период — 18, Growth factor — 0.001 1062 1459.18 1.15 3.55 0.05 366.24 (3.30%) 410.56 (3.69%)
Triple Exponential Moving Average Период — 50, Growth factor — 0.0003 657 1115.86 1.15 1.87 0.05 537.18 (4.68%) 597.71 (5.18%)
Fractal Adaptive Moving Average Период — 24, Growth factor — 0.0008 1030 615.92 1.06 0.8 0.02 734.03 (6.58%) 766.01 (6.85%)
Variable Index Dynamic Average Период EMA — 18, период CMO — 42, Growth factor — 0.001 238 2338.68 1.64 5.14 0.21 417.66 (3.62%) 454.69 (3.93%)
Nick Rypock Moving Average Fact — 28, Growth factor — 0.0002 435 1465.32 1.27 3.00 0.09 456.65 (4.02%) 488.7 (4.29%)

Нормированные результаты представлены в таблице (желтым выделены наилучшее результаты, красным — наихудший):

Наименование скользящей средней Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная просадка по средствам Сумма показателей без учета просадок Сумма показателей с учетом просадок
Moving Average (метод усреднения Simple) 0.67858 0.45316 0.66457 0.4324 0.38621 0.3508 2.22871 1.49171
Moving Average (метод усреднения Exponential) 0.30144 0.25001 0.32251 0.25216 0.37706 0.42261 1.12612 0.32645
Moving Average (метод усреднения Smoothed) 0.63098 0.51885 1 0.50010 0 0 2.64993 2.64993
Moving Average (метод усреднения Linear Weighted) 0.74086 0.46535 0.88693 0.42881 0.2 0.1734 2.52195 2.14855
Adaptive Moving Average 0.49025 0.34559 0.40481 0.36951 0.52846 0.54907 1.61017 0.53264
Double Exponential Moving Average 0.48948 0.15054 0.63263 0.14711 0.15926 0.18364 1.41976 1.07686
Triple Exponential Moving Average 0.2902 0.15141 0.2445 0.15928 0.55002 0.61347 0.84538 -0.3181
Fractal Adaptive Moving Average 0 0 0 0 1 1 0 -2
Variable Index Dynamic Average 1 1 0.99825 1 0.2768 0.285 3.99825 3.43645
Nick Rypock Moving Average 0.49305 0.36549 0.50479 0.37182 0.36593 0.36311 1.73515 1.00611

Как следует из таблиц, наилучшими показателями обладают Variable Index Dynamic Average и Moving Average с методами усреднения Smoothed и Linear Weighted . Показатели чистой прибыли, прибыльности, коэффициента Шарпа VIDYA превышают SMMA и LWMA, но у SMMA и LWMA наименьшая просадка по балансу и средствам. Результаты тестирования для VIDYA, SMMA и LWMA приведены на рис. 17-22.

Рис. 17. График баланса (средств) Variable Index Dynamic Average

Рис. 18. Отчет для Variable Index Dynamic Average

Рис. 19. График баланса (средств) Linear Weighted Moving Average

Рис. 20. Отчет для Linear Weighted Moving Average

Рис. 21. График баланса (средств) Smoothed Moving Average

Рис. 22 . Отчет для Smoothed Moving Average

Из рис. 17-22 видим, что несмотря на низкий процент прибыльных трейдов, индикаторы демонстрируют высокую чистую прибыль, это связано с тем, что валютная пара USDJPY имеет высокую волатильность.

Результаты тестирования на валютной паре USDCAD

Результаты тестирования на валютной паре USDCAD представлены в таблице:

Наименование скользящей средней Оптимизируемые параметры и их значения Количество трейдов Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная
просадка по средствам
Moving Average (метод усреднения Simple) Период —39, Growth factor — 0,0004 59 1101.44 2.30 7.11 0.40 133.44 (1.25%) 154.92 (1.45%)
Moving Average (метод усреднения Exponential) Период — 31, Growth factor — 0.0005 76 951.88 1.74 3.01 0.27 278.08 (2.56%) 316.57 (2.91%)
Moving Average (метод усреднения Smoothed) Период — 50, Growth factor — 0.0001 121 1262.26 1.57 3.07 0.22 343.76 (3.19%) 411.32 (3.81%)
Moving Average (метод усреднения Linear Weighted) Период — 46, Growth factor — 0.0005 46 903.64 2.34 5.31 0.42 128.97 (1.22%) 170.05 (1.61%)
Adaptive Moving Average Период — 38, Growth factor — 0.0009 41 990.44 3.18 8.62 0.55 77.57 (0.73%) 114.96 (1.09%)
Double Exponential Moving Average Период — 44, Growth factor — 0.0007 73 941.93 2.07 5.33 0.32 137.28 (1.28%) 176.6 (1.64%)
Triple Exponential Moving Average Период — 49, Growth factor — 0.0009 76 559.18 1.62 3.28 0.20 122.21 (1.2%) 170.57 (1.66%)
Fractal Adaptive Moving Average Период — 15, Growth factor — 0.0009 185 504.26 1.27 2.44 0.09 197.12 (1.95%) 206.37 (2.04%)
Variable Index Dynamic Average Период EMA — 34, период CMO — 9, Growth factor — 0.0002 111 1563.99 1.86 6.17 0.30 185.64 (1.70%) 253.36 (2.32%)
Nick Rypock Moving Average Fact — 41, Growth factor —0.0004 81 594.91 1.39 1.74 0.16 309.02 (2.88%) 342.16 (3.18%)

Нормированные результаты представлены в таблице(желтым выделены наилучшее результаты, красным — наихудший):

Наименование скользящей средней Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная просадка по средствам Сумма показателей без учета просадок Сумма показателей с учетом просадок
Moving Average (метод усреднения Simple) 0.56352 0.53776 0.78104 0.67198 0.20989 0.13484 2.5543 2.20957
Moving Average (метод усреднения Exponential) 0.42239 0.24419 0.18441 0.37529 0.75326 0.68029 1.22628 -0.2073
Moving Average (метод усреднения Smoothed) 0.71528 0.15751 0.19342 0.26924 1 1 1.33545 -0.6646
Moving Average (метод усреднения Linear Weighted) 0.37687 0.55859 0.5199 0.69827 0.1931 0.18589 2.15363 1.77465
Adaptive Moving Average 0.45878 1 1 1 0 0 3.45878 3.45878
Double Exponential Moving Average 0.413 0.42112 0.52277 0.48957 0.22431 0.20799 1.84645 1.41415
Triple Exponential Moving Average 0.05182 0.18256 0.22388 0.23681 0.1677 0.18764 0.69508 0.33974
Fractal Adaptive Moving Average 0 0 0.10249 0 0.44912 0.30844 0.10249 -0.6551
Variable Index Dynamic Average 1 0.30606 0.64482 0.43945 0.40599 0.467 2.39033 1.51734
Nick Rypock Moving Average 0.08554 0.06124 0 0.14059 0.86949 0.76664 0.28737 -1.3488

Как следует из таблиц, наилучшие показатели имеют Adaptive Moving Average, Moving Average с методом усреднения Simple и Variable Index Dynamic Average. Adaptive Moving Average демонстрирует наилучшие показатели прибыльности, фактора восстановления и коэффициента Шарпа, также имеет наименьшие просадки по балансу и средствам. У Variable Index Dynamic Average наибольшая чистая прибыль, но другие показатели не самые высокие. Результаты тестирования для AMA, SMA и VIDYA приведены на рис. 23-28.

Рис. 23. График баланса (средств) Adaptive Moving Average

Рис. 24 . Отчет для Adaptive Moving Average

Рис. 25. График баланса (средств) Simple Moving Average

Рис. 26 . Отчет для Simple Moving Average

Рис. 27. График баланса (средств) Variable Index Dynamic Average

Рис. 28 . Отчет для Variable Index Dynamic Average

Из рис. 23-28 видим AMA имеет наименьшее количество сделок и наибольший процент прибыльных сделок. SMA и VIDYA имеют большую прибыль за счет большего количества сделок, при этом количество прибыльных сделок превышает убыточные. Сильных просадок на графиках AMA, SMA и VIDYA не наблюдается.

Результаты тестирования на валютной паре AUDUSD

Результаты тестирования на валютной паре AUDUSD представлены в таблице:

Наименование скользящей средней Оптимизируемые параметры и их значения Количество трейдов Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная
просадка по средствам
Moving Average (метод усреднения Simple) Период —7, Growth factor — 0.0009 78 262.48 1.36 1.23 0.11 175.85 (1.74%) 214.18 (2.11%)
Moving Average (метод усреднения Exponential) Период — 40, Growth factor — 0.0004 24 652.88 2.62 2.82 0.47 206.76 (1.93%) 231.76 (2.16%)
Moving Average (метод усреднения Smoothed) Период — 21, Growth factor — 0.0004 24 651.18 2.61 2.81 0.47 206.76 (1.93%) 231.76 (2.16%)
Moving Average (метод усреднения Linear Weighted) Период — 32, Growth factor — 0.0005 24 383.64 1.97 2.25 0.30 116.38 (1.11%) 170.24 (1.62%)
Adaptive Moving Average Период — 21, Growth factor — 0.0007 58 252.39 1.30 0.54 0.11 392.15 (3.80%) 464.47 (4.48%)
Double Exponential Moving Average Период — 40, Growth factor — 0.0006 39 296.15 1.70 1.53 0.20 156.62 (1.51%) 193.02 (1.86%)
Triple Exponential Moving Average Период — 21, Growth factor — 0.001 69 273.12 1.35 1.05 0.11 228.5 (2.20%) 259.71 (2.50%)
Fractal Adaptive Moving Average Период — 38, Growth factor — 0.0007 83 109.01 1.11 0.55 0.04 142.85 (1.42%) 196.47 (1.94%)
Variable Index Dynamic Average Период EMA — 26, период CMO — 5, Growth factor — 0.0006 23 697.59 2.99 2.96 0.53 151.35 (1.41%) 235.38 (2.19%)
Nick Rypock Moving Average Fact — 22, Growth factor — 0.0006 34 509.27 1.90 2.55 0.28 94.58 (0.9%) 200 (1.89%)

Нормированные результаты представлены в таблице (желтым выделены наилучшее результаты, красным — наихудший):

Наименование скользящей средней Чистая прибыль Прибыльность Фактор восстановления Коэффициент Шарпа Максимальная просадка по балансу Максимальная просадка по средствам Сумма показателей без учета просадок Сумма показателей с учетом просадок
Moving Average (метод усреднения Simple) 0.26075 0.12921 0.28183 0.13463 0.27311 0.14934 0.80642 0.38397
Moving Average (метод усреднения Exponential) 0.92404 0.80629 0.93942 0.86552 0.37699 0.20909 3.53527 2.94919
Moving Average (метод усреднения Smoothed) 0.92115 0.8006 0.93639 0.86226 0.37699 0.20909 3.5204 2.93433
Moving Average (метод усреднения Linear Weighted) 0.4666 0.45691 0.70658 0.52861 0.07326 0 2.1587 2.08544
Adaptive Moving Average 0.2436 0.10105 0 0.13347 1 1 0.47812 -1.5219
Double Exponential Moving Average 0.31795 0.31405 0.40942 0.31848 0.20849 0.07742 1.3599 1.07399
Triple Exponential Moving Average 0.27882 0.12776 0.20999 0.14014 0.45005 0.30408 0.75672 0.00259
Fractal Adaptive Moving Average 0 0 0.00473 0 0.16221 0.08915 0.00473 -0.2466
Variable Index Dynamic Average 1 1 1 1 0.19078 0.22139 4 3.58783
Nick Rypock Moving Average 0.68004 0.42124 0.82757 0.48773 0 0.10115 2.41659 2.31545

Как следует из таблиц, наилучшие показатели имеют Variable Index Dynamic Average, и Moving Average с методами усреднения Exponential и Smoothed. VIDYA демонстрирует наилучшие показатели чистой прибыли, прибыльности, фактора восстановления и коэффициента Шарпа. EMA и SMMA имеют почти одинаковые показатели и одинаковое количество сделок. Результаты тестирования для VIDYA, EMA и SMMA приведены на рис. 29-34.

Рис. 29. График баланса (средств) Variable Index Dynamic Average

Рис. 30 . Отчет для Variable Index Dynamic Average

Рис. 31. График баланса (средств) Exponential Moving Average

Рис. 32 . Отчет для Exponential Moving Average

Рис. 33. График баланса (средств) Smoothed Moving Average

Рис. 34 . Отчет для Smoothed Moving Average

Из рис. 29-34 видим, что графики баланса (средств) для VIDYA, EMA и SMMA примерно одинаковы, у VIDYA больше прибыльных трейдов, чем EMA и SMMA. Валютная пара AUDUSD обладает низкой волатильностью, что и объясняет полученные результаты.

Из результатов тестирования на валютных парах EUR USD, GBPUSD, USDJPY, USDCAD, AUDUSD можно сделать следующие выводы:

  • наилучшие результаты на валютных парах с высокой ( GBPUSD, USDJPY) и низкой волатильностью ( AUDUSD) показала Variable Index Dynamic Average
  • на валютной паре USDCAD наилучшие показатели у Adaptive Moving Average, однако на валютной паре EUR USD она демонстрирует наихудшие результаты
  • на валютной паре EUR USD наилучшие показатели у Triple Exponential Moving Average
  • наихудшие результаты на валютных парах GBPUSD, USDJPY, USDCAD, AUDUSD продемонстрировала Fractal Adaptive Moving Average
  • неплохие результаты продемонстрировал стандартный индикатор Moving Average с различными периодами усреднения.

Заключение

Мы рассмотрели различные скользящие средние (MA (с методами Simple, Exponential, Smoothed, Linear Weighted), DEMA, TEMA, FRAMA, AMA, VIDYA, NRMA), для каждой MA описан порядок ее расчета. Выполнены сравнение и оптимизация параметров скользящих средних в торговле при одинаковых условиях входа и выхода из рынка.

Из полученных результатов можно сделать следующие выводы:

  • оптимизируя параметры любой из рассмотренных скользящих средних, можно получить прибыльную стратегию;
  • большинство скользящих средних — вариации индикатора EMA;
  • основное преимущество скользящих средних, основанных на EMA, — уменьшение ложных сигналов во флэте и более быстрая реакция на изменение тренда;
  • наилучшие результаты показал индикатор Variable Index Dynamic Average, его можно использовать как валютных парах с высокой и низкой волатильностью, так и валютных парах со средней волатильностью.

В статье рассмотрены четыре технических индикатора (AMA, FRAMA, VIDYA, NRMA), которые отличаются от EMA способом расчета фактора сглаживания. Возможно, для кого-нибудь это послужит стимулом к созданию новой, более эффективной вариации индикатора EMA.

WMA индикатор — скользящая средняя Weighted для MT4

Точное определение начала и конца направленного движения котировки обеспечивает трейдера стабильным заработком с минимальным риском. Для решения этой задачи применяется анализ с помощью вычисления средних значений ценовых последовательностей в каждом из временных периодов. Один из вариантов предполагает применение индикатора WMA, в формуле которого каждая из использующихся цен умножается на определенный числовой коэффициент.

p, blockquote 1,0,1,0,0 —>

Расшифровывается эта аббревиатура фразой «Weighted Moving Average», переводящейся как «Взвешенное скользящее среднее». Для цены текущей свечи вес (так называется множитель при цене) принимается равным расчетному периоду, а для каждой предыдущей свечи вес на 1 меньше, чем для предшествующей (у самой дальней от текущей свечи цены множитель равен 1). Таким образом, зависимость между весами линейная, поэтому полное название WMA – скользящая средняя линейно-взвешенная (т. е. Linear WMA или LWMA). Между собой все эти произведения цен и множителей суммируются, а затем делятся на сумму целых чисел от 1 до значения периода.

p, blockquote 2,0,0,0,0 —>

Рисунок 1. Индикатор WMA – это скользящая средняя для торговли вот на таких рынках с высокой волатильностью.

Например, на рис. 1 показан участок графика с тремя сменами трендов со средней длительностью каждого 12 свечей. Начало и конец каждого из них идентифицируются с задержкой всего 2÷3 свечи (по пересечению котировки с мувингом). Поэтому прибыль можно получить за 6÷8 свечей трендового движения, что немало для периодов высокой волатильности (как правило, коррекции на таких тренд незначительные или вовсе отсутствуют).

p, blockquote 3,1,0,0,0 —>

Использование индикатора WMA – описание с примером

Рисунок 2. Простейшая торговая стратегия на пробое индикатора WMA – описание на графике.

В простейшем случае закрытие позиций происходит по формированию противоположного сигнала. Одновременно сразу же открывается противоположная позиция. Пример действий трейдера показан на рис. 2 (динамика прибыльных сделок показана фиолетовыми отрезками, а убыточных – желтыми):

p, blockquote 4,0,0,1,0 —>

  • сначала следует пробой вниз и совершается прибыльная продажа;
  • затем следует пробой вверх и совершается прибыльная покупка;
  • после этого следуют два краткосрочных пробоя, сделки по которым принесли незначительный убыток;
  • следом за ними котировка пробила мувинг вниз, что позволило совершить еще одну прибыльную продажу.

Рисунок 3. Торговая стратегия на двух Weighted Moving Average.

Рассмотрим пример на рис. 3. Медленный мувинг рисуется голубым цветом, и он демонстрирует стабильный нисходящий тренд, поэтому на этом участке будут совершаться только продажи по пробитию котировкой быстрого красного WMA вниз. Все три такие продажи оказались прибыльными. Особого внимания заслуживает вторая сделка – пробивная свеча закрылась довольно далеко от мувинга. Поэтому имело смысл не открывать позицию сразу, а дождаться приближения котировки к скользящей средней (что и произошло на следующей свече) и лишь затем входить в рынок. Такое решение сделало из потенциально убыточной второй сделки прибыльную.

p, blockquote 5,0,0,0,0 —>

Индикатор WMA для MT4

Рисунок 4. В терминал MT4 встроен индикатор WMA, поэтому скачать для его использования ничего не придется.

Затем в настроечном окне надо переменной «Метод МА» задать значение «Linear Weighted» и остальным параметрам (период, сдвиг, расчетная цена) также присвоить значения, соответствующие используемой торговой стратегии и текущей рыночной ситуации.

(4 оценок, среднее: 5,00 из 5)

МАшка (Moving Average) – торговля по скользящим средним

Самый первый индикатор, про который я хочу рассказать, можно сказать родоначальник индикаторной торговли – Moving Average или простая скользящая средняя. На нем основываются большое количество индикаторов, например, Trix и Envelopes.

Вообще торговля по методу скользящей средней применяется во многих стратегиях. Ма используют с целью сглаживания «сиюминутных» ценовых колебаний и выявления общего рыночного положения дел. Метод, который при этом используется, называется средняя скользящая. На графике МАшка выглядит как простая линия: мы берем значение котировок закрытия (конечных цен) за некоторое количество периодов (свечей), складываем и делим на количество периодов. Для работы с индикатором MA вы можете использовать графики, которые я разместил в своем блоге. Чтобы наложить его на график, нужно нажать на вкладку indicators и выбрать во всплывшем окне moving average.

Настройка индикатора

Положение скользящей средней цены на графике помогает определить тренд и четко увидеть, когда он заканчивается. Цена (график) выше линии – преобладает восходящий тренд. И наоборот, цена (график) ниже средней – тренд нисходящий.

В настройках MA можно менять один единственный параметр – количество периодов усреднения для торговли по методу скользящей средней. В зависимости от цели можно усреднять разное количество периодов. Для краткосрочного анализа на часовом таймфрейме я выставляю периоды от 5 до 10, для среднесрочного от 20 до 50 и для долгосрочного от 100 до 200 (свыше недели). Периоды на графике можно поменять, нажав шестеренку, после чего ввести нужный период исследования в строку length.

Чем большее количество значений (периодов) мы выставляем, тем более гладкую линию скользящей средней цены мы увидим на графике.

Больший период делает скользящую среднюю менее чувствительной к сиюминутным колебаниям и показывает нам общую картину (долгосрочный тренд). Но при смене тренда МА отреагирует очень медленно, т.к. этот индикатор усредняет большое количество периодов, что не дает нам возможность вовремя отреагировать. Меньший период, наоборот, будет резко реагировать на развороты графика и показывать начало этих разворотов, что поможет сделать ставку вовремя, но, в тоже время, разворот может быть краткосрочным, незначительным, что может сделать ставку убыточной.

Помимо простой скользящей средней (SMA), которая усредняет котировки закрытия периодов, вы можете наложить на график следующие индикаторы данной группы:

  • Экспоненциальная скользящая средняя (EMA) помимо стандартного усреднения придает каждому последующему периоду больший вес (расчет идет на то, что последние изменения цены для нас важнее, чем те, которые были раньше);
  • Сглаженное скользящее среднее (SMMA) учитывает также предыдущие периоды при расчете;
  • Взвешенная скользящая средняя (LWMA), так же как и EMA, придает вес более поздним периодам.

Лично я предпочитаю торговать по простой скользящей средней (SMA).

Комбинации, пробои и развороты

Обычно я использую комбинацию нескольких средних. Большие средние покажут общий ценовой тренд, т.е. дадут нам возможность сделать ставку по направлению рынка, а не против него. А меньшие средние покажут конкретный момент для покупки опциона. При торговле по скользящим средним сигналом для бинарных опционов на call является пересечение средних скользящих вверх, а на put – пересечение средних вниз, т.е. тот момент, когда все средние МАшки будут указывать в одном направлении.

Но это всего лишь один из методов торговли по скользящим средним. Торговать можно также на пробоях графиком линии MA с большими периодами. При пробое графиком линии МА с большим периодом (100, 200) снизу вверх нужно покупать call опцион, при пробое сверху вниз – put опцион.

Другой метод использования – разворот графика от МА с большим периодом. В таком случае нашим сигналом для бинарных опционов будет следующая ситуация: при касании графиком МА с большими периодами нужно делать ставку в обратную от касания сторону.

В заключении хочу сказать, что лично я использую торговлю по скользящим средним постоянно, т.к. МА является очень важным элементом любой стратегии, показывает направление тренда, моменты разворота тренда.

Стратегии для бинарных опционов, в которых используется МА:

Также МА можно совмещать с другими индикаторами, как отдельно, так и совместно с несколькими средними разных периодов. Прочитать о других индикаторах вы можете прочитав здесь. На основе простой скользящей средней строится множество других исследований, например, такой популярный индикатор, как полосы Боллинджера. На вопросы о МАшке я буду рад ответить в комментариях.

МА является уже установленной во все платформы для проведения технического анализа, однако если по той или иной причине вам требуется скачать скользящую среднюю, вы можете сделать это, нажав на кнопку ниже:

ТОП-3 площадки с бинарными опционами за 2020 год:
  • Бинариум
    Бинариум

    1 место! Лучший брокер за этот год! Надежность и честность гарантируется!

  • ФинМакс
    ФинМакс

    3е место за большое количество торговых инструментов!

Добавить комментарий